Question Number	Answer	Mark
1(a)	Charges (1) Movement of electrons from one plate to the other OR one plate becomes + the other - OR until pd across C equals $V_{\text {supply }}$ (1)	2
1(b)(i)	Use of $\mathrm{Q}=\mathrm{It}$ (both 0.74 and $0.1 / 0.2$) (1) Recognition of milli and $\Delta t=0.1$ (1) $\mathrm{Eg} Q=0.74 \times 10^{-3} \times 0.1=74 \times 10^{-6} \mathrm{C}$	2
1(b) (ii)	Use of $\mathrm{V}=\mathrm{Q} / \mathrm{C}$ (1) Explains unit conversion (1) Eg $V=278 \times 10^{-6} / 100 \times 10^{-6}=2.78$ [accept μ / μ]	2
1(c)(i)	```Recall of RC (1) Answer =0.3 (s) (1) EgT = 3000 x 0.0001 plus either 1/ e or 37% of initial (1) =0.23-0.27 (s) (1) or sub in formula I=foe-t/RC =0.23-0.27 (s)(1)``` or Initial Tangent drawn (1)	
	Time constant $=0.2-0.3$ (s) (1)	4
1(c)(ii)	Plot Ln I / Log I (1) Against t (1) (dependent on first mark) or Gradients of graph (1) Against I (1) (dependent on first mark) should be straight line (1) (dependent on previous 2)	3
	Total for question	13

Question Number	Answer		Mark
2(a)	The capacitor stores charge Or capacitor charges from the supply The idea that the capacitor doesn't fully discharge before being recharged.	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
2(b)(i)	$(6.4+4.4) / 2=5.4 \mathrm{~V}$	(1)	1
2(b)(ii)	Use of $V=I R$ Average $I=5.4 \mathrm{~V} /\left(2.2 \times 10^{3} \Omega\right)=2.5 \times 10^{-3} \mathrm{~A}$ ecf value form (b)(i)	$\begin{aligned} & \hline(1) \\ & (1) \end{aligned}$	2
2(b)(iii)	Time $=17 \mathrm{~ms}$ or 17.5 ms	(1)	1
2(b)(iv)	Use of $Q=I t$ Use of $C=Q / V$ Use of $\Delta V=2.0 \mathrm{~V}$ $C=21 \mu \mathrm{~F}$ (ecf values of I and t from above) Example of calculation $\begin{aligned} & Q=2.5 \times 10^{-3} \mathrm{~A} \times 17 \times 10^{-3} \mathrm{~s}=4.25 \times 10^{-5} \mathrm{C} \\ & C=4.25 \times 10^{-5} \mathrm{C} / 2.0 \mathrm{~V} \\ & C=21 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & (1) \\ & (1) \\ & (1) \end{aligned}$	4
2(c)	Uses a larger capacitance Because a larger time constant is needed Or stores more charge Or less $\Delta V \rightarrow \Delta Q / C$		2
	Total for question 17		12

Question Number	Answer		Mark
3(a)	$\begin{aligned} & \text { Use of } Q=I t \\ & Q=2.8 \mathrm{C} \end{aligned}$ Example of calculation $\begin{aligned} & Q=2.0 \times 10^{3} \mathrm{~A} \times 1.4 \times 10^{-3} \mathrm{~s} \\ & Q=2.8 \mathrm{C} \end{aligned}$	(1) (1)	2
3(a)(ii)	See $\tau=R C$ $\tau=3.0 \times 10^{-4}(\mathrm{~s})$ Relates time constant to the time for which current is required Example of calculation $\begin{aligned} & \tau=0.50 \Omega \times\left(600 \times 10^{-6} \mathrm{~F}\right) \\ & \tau=3.0 \times 10^{-4} \mathrm{~s} \\ & 1.4 \times 10^{-3} \mathrm{~s} / 3.0 \times 10^{-4} \mathrm{~s}=4.7 \mathrm{RC} \end{aligned}$	(1) (1) (1)	3
3(b)(i)	Use of $Q=C V$ $V=4700 \mathrm{~V}$ (e.c.f from (a)(i)) $\begin{aligned} & \text { Example of calculation } \\ & \begin{array}{l} V=2.8 \mathrm{~V} /\left(600 \times 10^{-6} \mathrm{~F}\right) \\ V=4670 \mathrm{~V} \end{array} \end{aligned}$	(1) (1)	2
3(b)(ii)	Use of $W=1 / 2 Q V$ Or $W=1 / 2 \mathrm{Q}^{2} / C$ Or $W=1 / 2 C V^{2}$ Use of $P=W / t$ $P=4.7$ MW (e.c.f. from (a)(i) and/or (b)(i)) Example of calculation $\begin{aligned} & P=(2.8 \mathrm{C} \times 2.8 \mathrm{C}) /\left(2 \times 600 \times 10^{-6} \mathrm{~F} \times 1.4 \times 10^{-3} \mathrm{~s}\right) \\ & P=4.7 \mathrm{MW} \end{aligned}$	(1) (1) (1)	3
	Total for question 15		10

