Question	Answer	Mark
Number		
1(a)	Charges (1)	-
	Movement of electrons from one plate to the other	2
	OR one plate becomes + the other - OR until pd	
1/b)(i)	across C equals V_{supply} (1)	
1(b)(i)	Use of $Q = It$ (both 0.74 and 0.1/0.2) (1)	2
	Recognition of milli and $\Delta t = 0.1$ (1)	Z
	Eg $Q = 0.74 \times 10^{-3} \times 0.1 = 74 \times 10^{-6} \text{ C}$	
1(b)	Use of $V = Q/C$ (1)	
(ii)	Explains unit conversion (1)	2
	Eg $V = 278 \times 10^{-6} / 100 \times 10^{-6} = 2.78 \text{ [accept } \mu/\mu\text{]}$	
1(c)(i)	Recall of RC (1)	
	Answer = 0.3 (s) (1)	
	Eg $T = 3000 \times 0.0001$	
	plus either	
	1/e or 37% of initial (1)	
	=0.23 - 0.27 (s) (1)	
	or	
	sub in formula <i>I=Io</i> e ^{-t/RC} (1)	
	= 0.23 - 0.27 (s) (1)	
	Or Initial Tangont drawn (1)	
	Initial Tangent drawn (1)	
	Time constant = 0.2-0.3 (s) (1)	4
1(c)(ii)	Plot Ln / / Log / (1)	4
	Against t (1) (dependent on first mark)	
	or	3
	Gradients of graph (1)	-
	Against I (1) (dependent on first mark)	
	should be straight line (1) (dependent on previous 2)	
	Total for question	13

Question Number	Answer		Mark
2(a)	The capacitor stores charge Or capacitor charges from the supply The idea that the capacitor doesn't fully discharge before being recharged.	(1) (1)	2
2(b)(i)	(6.4 + 4.4)/2 = 5.4 V	(1)	1
2(b)(ii)	Use of $V = IR$ Average $I = 5.4 \text{ V}/(2.2 \times 10^{3} \Omega) = 2.5 \times 10^{-3} \text{ A ecf value form (b)(i)}$	(1) (1)	2
2(b)(iii)	Time = 17 ms or 17.5 ms	(1)	1
2(b)(iv)	Use of $Q = It$ Use of $C = Q/V$ Use of $\Delta V = 2.0$ V $C = 21 \ \mu\text{F}$ (ecf values of I and t from above)	(1) (1) (1) (1)	4
2(c)	Uses a larger capacitance	(1)	
	Because a larger time constant is needed Or stores more charge		
	Or less $\Delta V \rightarrow \Delta Q/C$	(1)	2
	Total for question 17		12

Question Number	Answer	Mark
3(a)	Use of $Q = It$ (1 Q = 2.8 C (1) <u>Example of calculation</u> $Q = 2.0 \times 10^3 \text{ A} \times 1.4 \times 10^{-3} \text{ s}$ Q = 2.8 C	· .
3(a)(ii)	See $\tau = RC$ (1 $\tau = 3.0 \times 10^{-4}$ (s) (1 Relates time constant to the time for which current is required (1 <u>Example of calculation</u> $\tau = 0.50\Omega \times (600 \times 10^{-6} \text{ F})$ $\tau = 3.0 \times 10^{-4} \text{ s}$ $1.4 \times 10^{-3} \text{ s} / 3.0 \times 10^{-4} \text{ s} = 4.7\text{RC}$.)
3(b)(i)	Use of $Q = CV$ (1 V = 4700 V (e.c.f from (a)(i)) (1 <u>Example of calculation</u> $V = 2.8 \text{ V} / (600 \times 10^{-6} \text{ F})$ V = 4670 V	
3(b)(ii)	Use of $W = \frac{1}{2} QV$ Or $W = \frac{1}{2} Q^2/C$ Or $W = \frac{1}{2} CV^2$ (1 Use of $P = W/t$ (1 P = 4.7 MW (e.c.f. from (a)(i) and/or (b)(i)) (1 <u>Example of calculation</u> $P = (2.8 \text{ C} \times 2.8 \text{ C}) / (2 \times 600 \times 10^{-6} \text{ F} \times 1.4 \times 10^{-3} \text{ s})$ P = 4.7 MW)
	Total for question 15	10